Combined Data-Driven Biomedical Outcome Prediction and Interaction Network Inference from Molecular Profiling Data

The International Science Forum on Computational Toxicology

May 21–23, 2007, U.S. EPA Main Facility, Research Triangle Park, NC

Roland Somogyi, Ph.D.

May 22, 2007

rsomogyi@biosystemix.com

www.biosystemix.com

(613)-376-3126

Data-driven "reverse engineering" analysis directly links measurements to insight

- Computational solutions can be achieved that are closely and directly tied to observed facts
- Molecular activity patterns are the result of the molecular interaction networks
- Ergo: Molecular interaction networks may be "reverse engineered" from activity patterns
- Furthermore, reverse engineerig approaches, as applied to molecular activity patterns of toxicological responses, may provide key,
 objective insights into processes of toxicity

Three fundamental approaches

- PIA Predictive Interaction Networks
 - Does gene A interact with gene B in determining a response or cell/tissue type?
 - Directly identifies the gene interactions that determine biological outcomes
- CFA CoFluctuation Analysis
 - Is the profile of gene A correlated to gene B?
 - Tells us about shared regulation, but not how genes interact to determine biological outcomes
- TNA Temporal Network Analysis
 - Does the activity of gene A predict gene B?
 - Tells us about how genes regulate each other, but not how interactions determine outcomes

PIA – Predictive Interaction Analysis

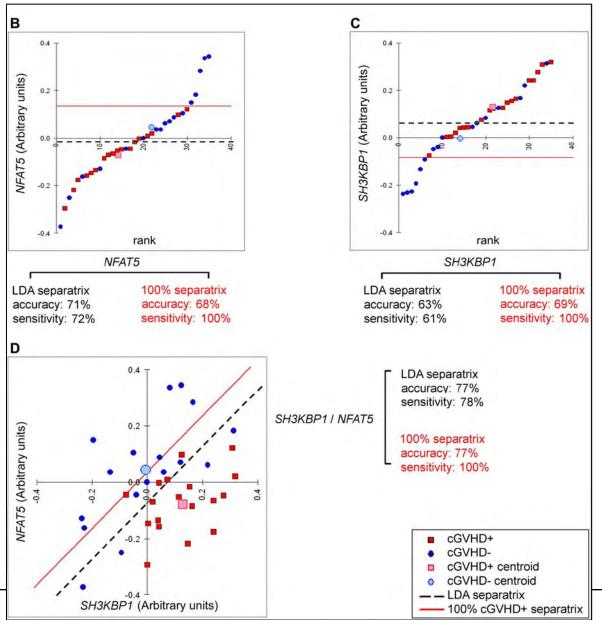
Competitive Predictive Interaction Analysis

- Gene pair expression measurements are reduced to a single variable, v
 - x/y ~ outcome, where x represents gene X (R/G) and y represents gene Y (R/G)
 - logx logy ~ outcome
 - we define: v = logx logy
 - Note: In the analysis below, x then will refer to logx, and y then will refer to logy
- ANOVA provides p-values to assess separation of outcome class-specific distributions
- The true value of a GP (gene pair) model can only be demonstrated if it outperforms predictive models based on its constituent genes

Synergistic Predictive Interaction Analysis

- Gene pair expression measurements are reduced to a single variable, u
 - x*y ~ outcome, where x represents gene X (R/G) and y represents gene Y (R/G)
 - logx + logy ~ outcome
 - we define: u = logx + logy

PIA gene pair model best predicts GVHD (graft vs. host disease), compared to single genes



 PIA gene pair p-value is 1000x better than the best single gene

> Baron et al. (2007) Prediction of graftversus host disease in humans by donor gene-expression profiling. PLoS Med 4(1): e23.

Similarity Analysis for identification of key features in vaccination time series

CONCORDANCE OF MEANS (class-class comparison)

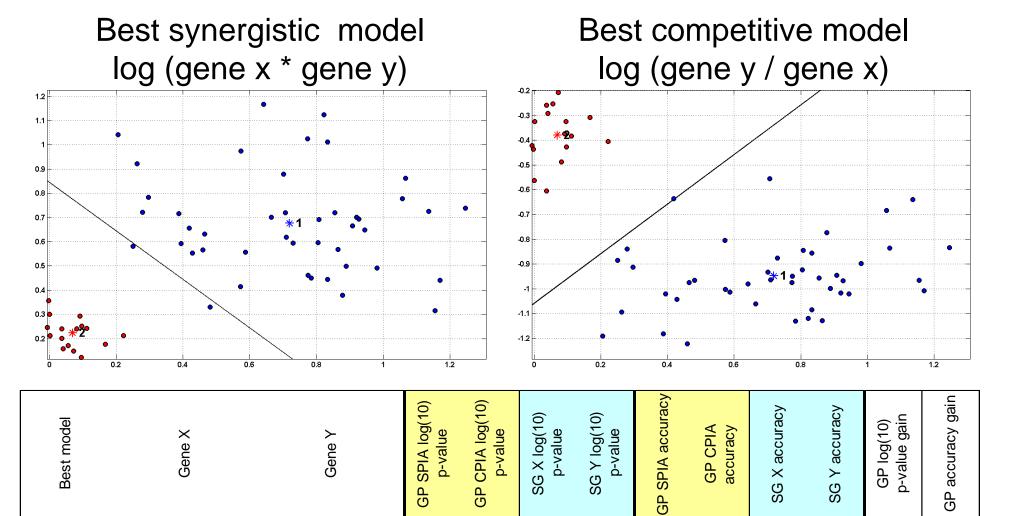
	t000	t003	t007	t010	t014	t028	t060	t180
t000	1.00	0.84	0.81	0.97	0.96	0.97	0.96	0.96
t003	0.84	1.00	0.97	0.83	0.81	0.82	0.83	0.81
t007	0.81	0.97	1.00	0.81	0.78	0.80	0.80	0.79
t010	0.97	0.83	0.81	1.00	0.96	0.97	0.95	0.95
t014	0.96	0.81	0.78	0.96	1.00	0.97	0.94	0.97
t028	0.97	0.82	0.80	0.97	0.97	1.00	0.96	0.96
t060	0.96	0.83	0.80	0.95	0.94	0.96	1.00	0.95
t180	0.96	0.81	0.79	0.95	0.97	0.96	0.95	1.00

MEAN OF CONCORDANCE (chip-chip comparison)

	t000	t003	t007	t010	t014	t028	t060	t180
t000	0.64	0.65	0.62	0.73	0.72	0.74	0.74	0.72
t003	0.65	0.67	0.75	0.64	0.62	0.64	0.64	0.62
t007	0.62	0.75	0.63	0.61	0.59	0.61	0.62	0.59
t010	0.73	0.64	0.61	0.63	0.72	0.74	0.72	0.72
t014	0.72	0.62	0.59	0.72	0.62	0.73	0.71	0.72
t028	0.74	0.64	0.61	0.74	0.73	0.62	0.74	0.73
t060	0.74	0.64	0.62	0.72	0.71	0.74	0.60	0.72
t180	0.72	0.62	0.59	0.72	0.72	0.73	0.72	0.60

 The major time point differences are between t003 and t007 vs. the remaining time points

PIA of vaccination response shows strong gene interactions in outcome discrimination



SPIA

(synergistic)

CPIA

(competitive)

Protein kinase in cell

cycle control

Protein kinase in cell

cycle control

Tumor-related gene

Neurotransmitter

receptor

-27.3

-0.7

-2.7

-30.6

-19.8

-19.8

-18.0

-17.1

97%

60%

67%

98%

90%

90%

90%

95%

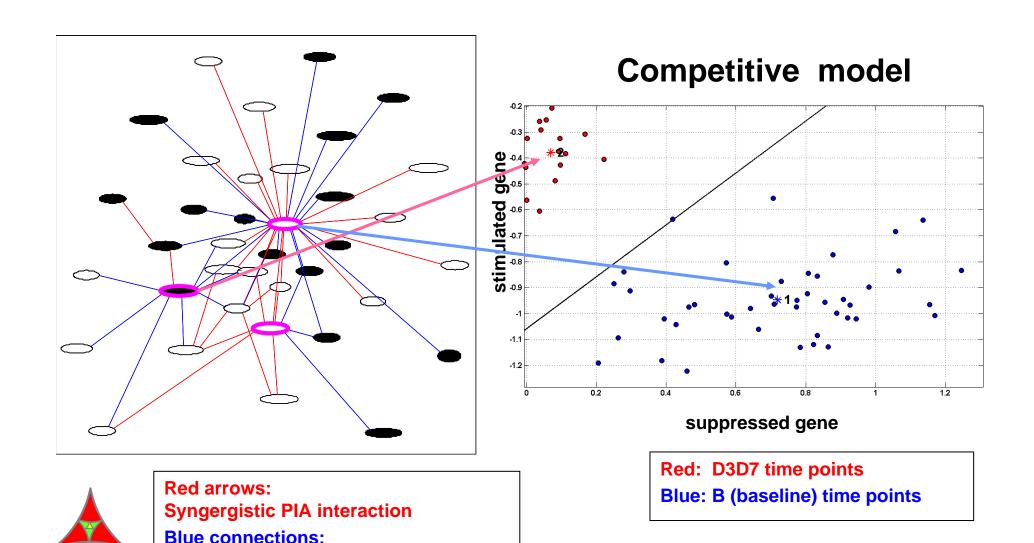
7.6

10.8

7%

3%

PIA gene pairs form a network of interactions that determine vaccination response outcome

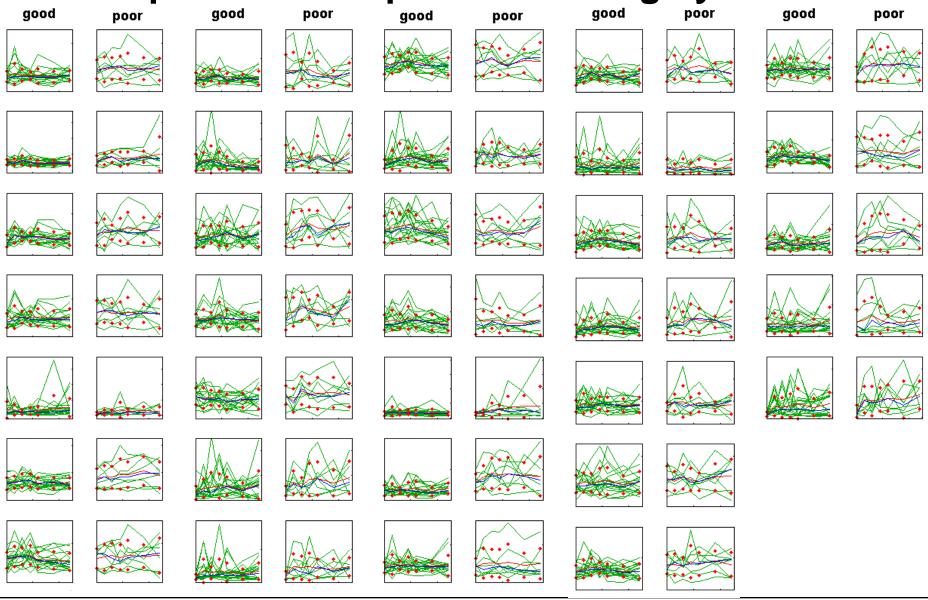


Biosystemix, Ltd.

Competitive PIA interactions

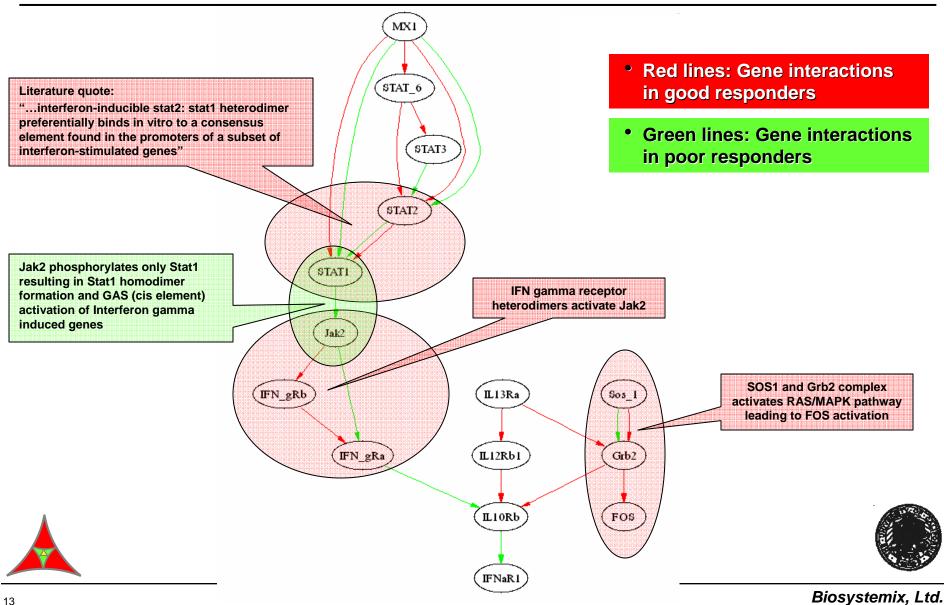
CFA – CoFluctuation Analysis

Expression time series over seven time points for multiple sclerosis patients are highly variable



Biosystemix, Ltd.

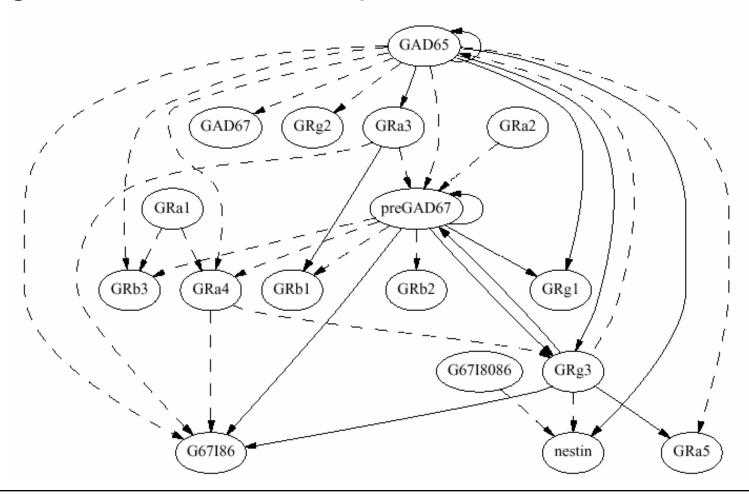
CFA reconstructs signaling pathways directly from clinical multiple sclerosis gene expression data



TNA – Temporal Network Analysis

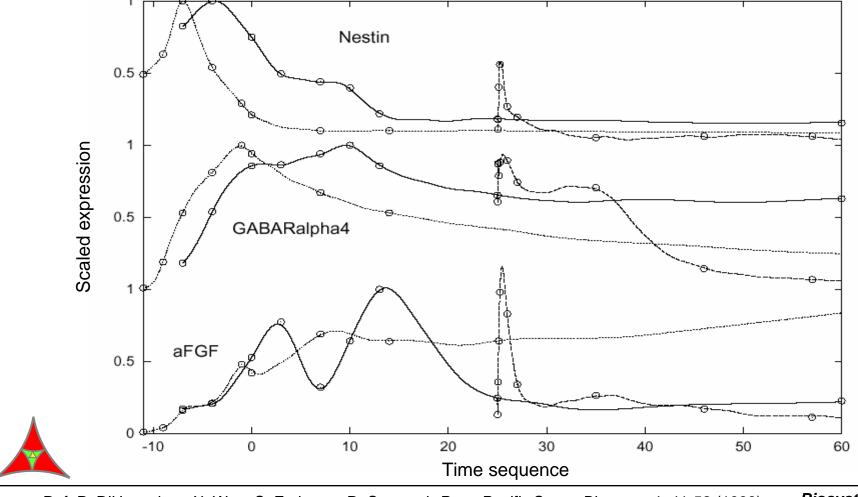
Reverse Engineering the GABAergic Gene Network from Expression Time Series Data

Connectivity inferred computationally from the data using linear differential equation models



In silico Prediction of Experimental Gene Expression using a Reverse-Engineered Gene Network Model

In addition to providing a wiring diagram, TNA accurately simulates original measurement data



Biosystemix Discovery Partnership Areas

- Clinical studies
 - Personalized molecular medicine (development of novel molecular diagnostics)
 - Functional discovery
 (molecular interaction network inference)
- Laboratory models
 - Toxicity and efficacy studies
 - Complex dosing and time series studies
 - Complexity of perturbation data provides support for gene network reverse engineering

Biosystemix Discovery Partnerships

- University of Montreal & Institute for Research in Cancer and Immunology
 - Prediction of GVHD (graft vs. host disease)
 - Understanding of HIV resistance
- Queens University & Ontario Institute for Cancer Research
 - Predicting clinical outcomes in Follicular Lymphoma
- University of Manitoba
 - Understanding of HIV resistance
- UCSF, Department of Neurology
 - Predicting drug response in multiple sclerosis
- University of Michigan
 - Inference of pathways involved in toxicity